Contents

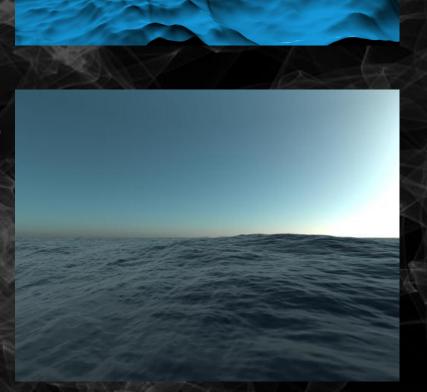
- Where we stand
- objectives
- Examples in movies of cg water
- Navier Stokes, potential flow, and approximations
- FFT solution
- Oceanography
- Random surface generation
- High resoluton example
- Video Experiment
- Continuous Loops
- Hamiltonian approach
- Choppy waves from the FFT solution
- Spray Algorithm
- References

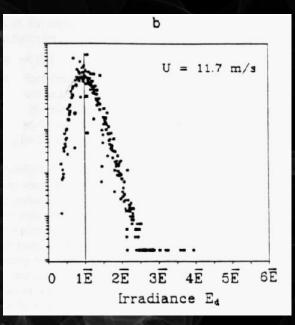
Simulating Ocean Surfaces

Jerry Tessendorf

tssndrf@gte.net

Objectives





- Oceanography concepts
 Random wave math
 Hints for realistic look
- Advanced things

 $h(x, z, t) = \int_{-\infty}^{\infty} dk_x \, dk_z \, \tilde{h}(\mathbf{k}, t) \exp\left\{i(k_x x + k_z z)\right\}$

 $\tilde{h}(\mathbf{k},t) = \tilde{h}_0(\mathbf{k}) \exp\left\{-i\omega_0(\mathbf{k})t\right\} + \tilde{h}_0^*(-\mathbf{k}) \exp\left\{i\omega_0(\mathbf{k})t\right\}$

13th Warrior

Virus

Deep Blue Sea

Waterworld

Hard Rain

Cast Away

Contact

Truman Show Titanic

Navier-Stokes Fluid Dynamics

Force Equation

 $\frac{\partial \mathbf{u}(\mathbf{x},t)}{\partial t} + \mathbf{u}(\mathbf{x},t) \cdot \nabla \mathbf{u}(\mathbf{x},t) + \nabla p(\mathbf{x},t)/\rho = -g\hat{\mathbf{y}} + \mathbf{F}$

Mass Conservation

 $\nabla \cdot \mathbf{u}(\mathbf{x}, t) = 0$

• 3 velocity components

Solve for functions of space and time:

- pressure p
- density ρ distribution

Boundary conditions are important constraints

Very hard - Many scientitic careers built on this

Potential Flow

Special Substitution $\mathbf{u} = \nabla \phi(\mathbf{x}, t)$

Transforms the equations into

$$\frac{\partial \phi(\mathbf{x}, t)}{\partial t} + \frac{1}{2} |\nabla \phi(\mathbf{x}, t)|^2 + \frac{p(\mathbf{x}, t)}{\rho} + g\mathbf{x} \cdot \hat{\mathbf{y}} = 0$$
$$\nabla^2 \phi(\mathbf{x}, t) = 0$$

This problem is MUCH simpler computationally and mathematically.

Free Surface Potential Flow

In the water volume, mass conservation is enforced via

 $\phi(\mathbf{x}) = \int_{\partial V} dA' \left\{ \frac{\partial \phi(\mathbf{x}')}{\partial n'} G(\mathbf{x}, \mathbf{x}') - \phi(\mathbf{x}') \frac{\partial G(\mathbf{x}, \mathbf{x}')}{\partial n'} \right\}$

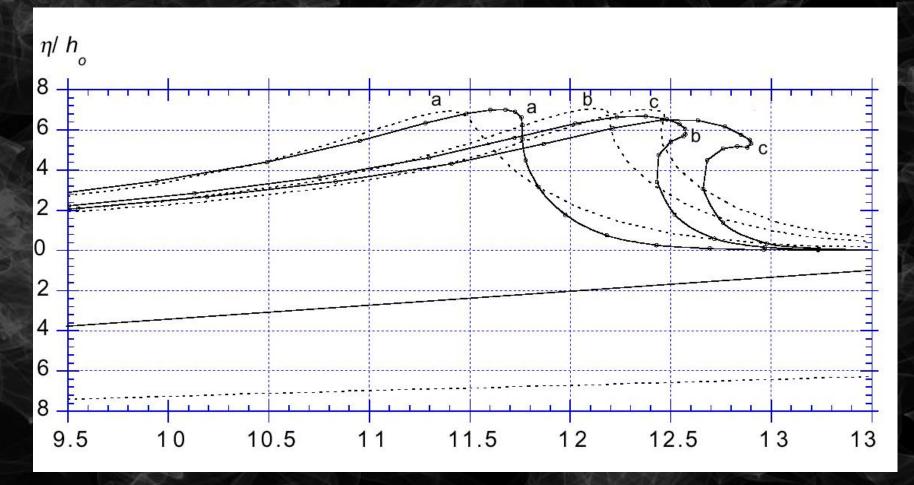
At points ${\bf r}$ on the surface

 $\frac{\partial \phi(\mathbf{r},t)}{\partial t} + \frac{1}{2} |\nabla \phi(\mathbf{r},t)|^2 + \frac{p(\mathbf{r},t)}{\rho} + g\mathbf{r} \cdot \hat{\mathbf{y}} = 0$

Dynamics of surface points:

 $\frac{d\mathbf{r}(t)}{dt} = \nabla\phi(\mathbf{r}, t)$

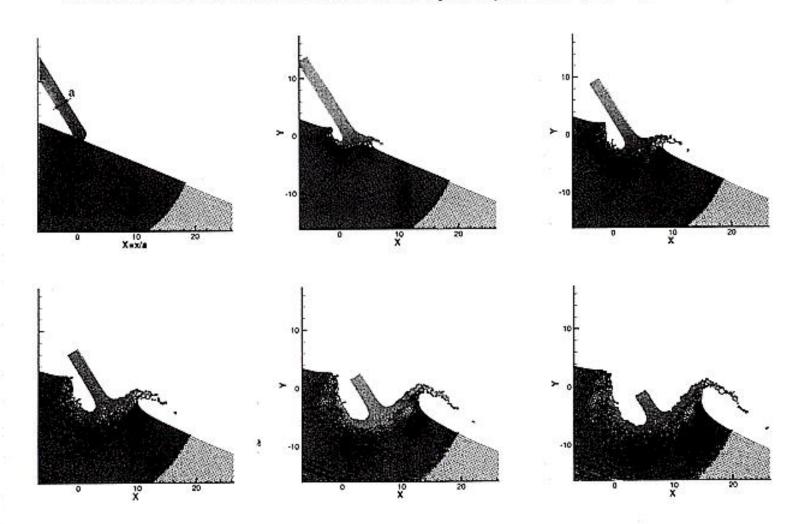
Numerical Wave Tank Simulation



Grilli, Guyenne, Dias (2000)

Plunging Break and Splash Simulation

Simulated Jet Impact on Wave Front. Gridless Method: Smoothed Particle Hydrodynamics (100K particles).



Tulin (1999)

Simplifying the Problem

Road to practicality - ocean surface:
Simplify equations for relatively mild conditions
Fill in gaps with oceanography.

Original dynamical equation at 3D points in volume

 $\frac{\partial \phi(\mathbf{r}, t)}{\partial t} + \frac{1}{2} |\nabla \phi(\mathbf{r}, t)|^2 + \frac{p(\mathbf{r}, t)}{\rho} + g\mathbf{r} \cdot \hat{\mathbf{y}} = 0$

Equation at 2D points (x, z) on surface with height h

 $\frac{\partial \phi(x,z,t)}{\partial t} = -gh(x,z,t)$

Simplifying the Problem: Mass Conservation

Vertical component of velocity

$$\frac{\partial h(x,z,t)}{\partial t} = \hat{\mathbf{y}} \cdot \nabla \phi(x,z,t)$$

Use mass conservation condition

$$\hat{\mathbf{y}} \cdot \nabla \phi(x, z, t) \sim \left(\sqrt{-\nabla_H^2}\right) \phi = \left(\sqrt{-\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial z^2}}\right) \phi$$

Linearized Surface Waves

$$\frac{\partial h(x,z,t)}{\partial t} = \left(\sqrt{-\nabla_H^2}\right)\phi(x,z,t)$$

$$\frac{\partial \phi(x,z,t)}{\partial t} = -gh(x,z,t)$$

General solution easily computed in terms of Fourier Transforms

Solution for Linearized Surface Waves

General solution in terms of Fourier Transform

 $h(x,z,t) = \int_{-\infty}^{\infty} dk_x \, dk_z \, \tilde{h}(\mathbf{k},t) \, \exp\left\{i(k_x x + k_z z)\right\}$

with the amplitude depending on the dispersion relationship

 $|\omega_0(\mathbf{k})=\sqrt{g\,|\mathbf{k}|}$

 $\tilde{h}(\mathbf{k},t) = \tilde{h}_0(\mathbf{k}) \exp\left\{-i\omega_0(\mathbf{k})t\right\} + \tilde{h}_0^*(-\mathbf{k}) \exp\left\{i\omega_0(\mathbf{k})t\right\}$

The complex amplitude $\tilde{h}_0(\mathbf{k})$ is arbitrary.

Oceanography

- Think of the heights of the waves as a kind of random process
- Decades of detailed measurements support a statistical description of ocean waves.
- The wave height has a spectrum

 $\left\langle \left| \tilde{h}_0(\mathbf{k}) \right|^2 \right\rangle = P_0(\mathbf{k})$

• Oceanographic models tie P_0 to environmental parameters like wind velocity, temperature, salinity, etc.

Models of Spectrum

- Wind speed V
- Wind direction vector $\hat{\mathbf{V}}$ (horizontal only)
- Length scale of biggest waves $L = V^2/g$ (g=gravitational constant)

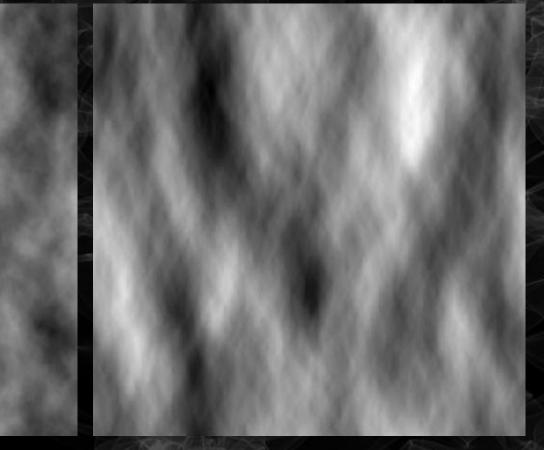
Phillips Spectrum

$$P_0(\mathbf{k}) = \left| \mathbf{\hat{k}} \cdot \mathbf{\hat{V}} \right|^2 \frac{\exp(-1/k^2 L^2)}{k^4}$$

JONSWAP Frequency Spectrum $P_{0}(\omega) = \frac{\exp\left\{-\frac{5}{4}\left(\frac{\omega}{\Omega}\right)^{-4} + e^{-(\omega-\Omega)^{2}/2(\sigma\Omega)^{2}}\ln\gamma\right\}}{\omega^{5}}$ Variation in Wave Height Field

Pure Phillips Spectrum

Modified Phillips Spectrum



Simulation of a Random Surface

Generate a set of "random" amplitudes on a grid $\tilde{h}_0({\bf k}) = \xi e^{i\theta} \sqrt{P_0({\bf k})}$

 ξ = Gaussian random number, mean 0 & std dev 1 θ = Uniform random number [0,2 π].

$$k_x = \frac{2\pi}{\Delta x} \frac{n}{N} \quad (n = -N/2, \dots, (N-1)/2)$$

$$k_z = \frac{2\pi}{\Delta z} \frac{m}{M} \quad (m = -M/2, \dots, (M-1)/2)$$

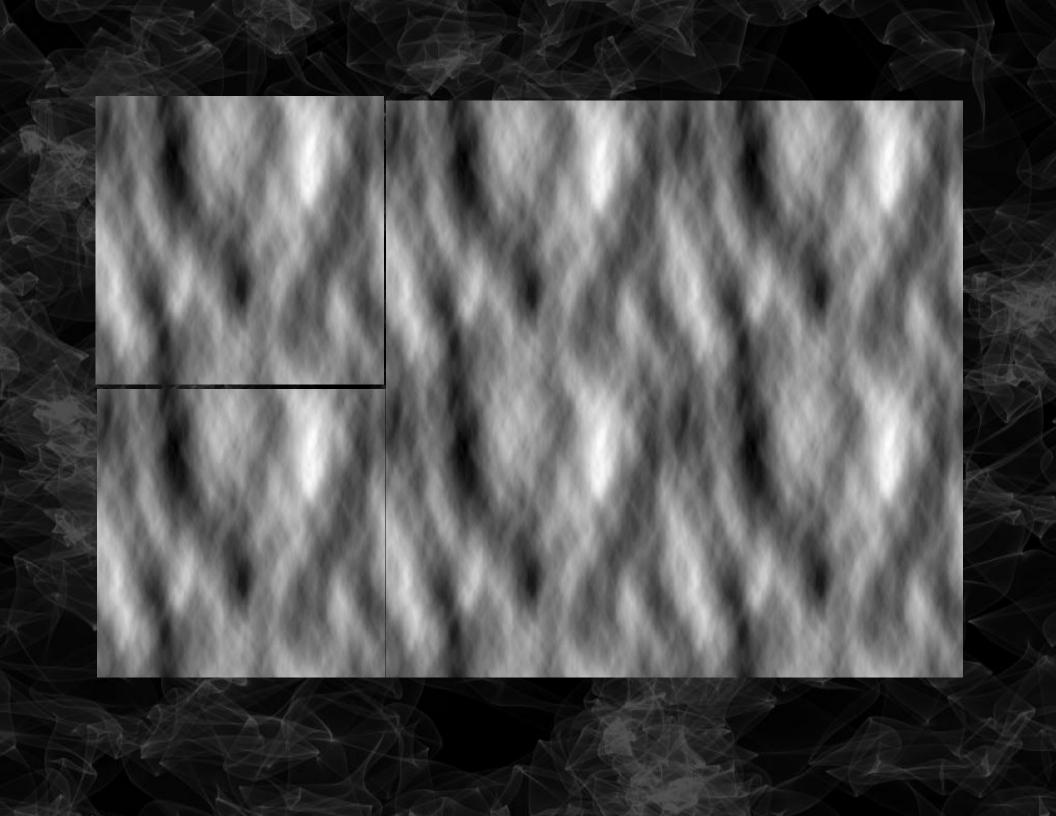
FFT of Random Amplitudes

Use the Fast Fourier Transform (FFT) on the amplitudes to obtain the wave height realization h(x, z, t)

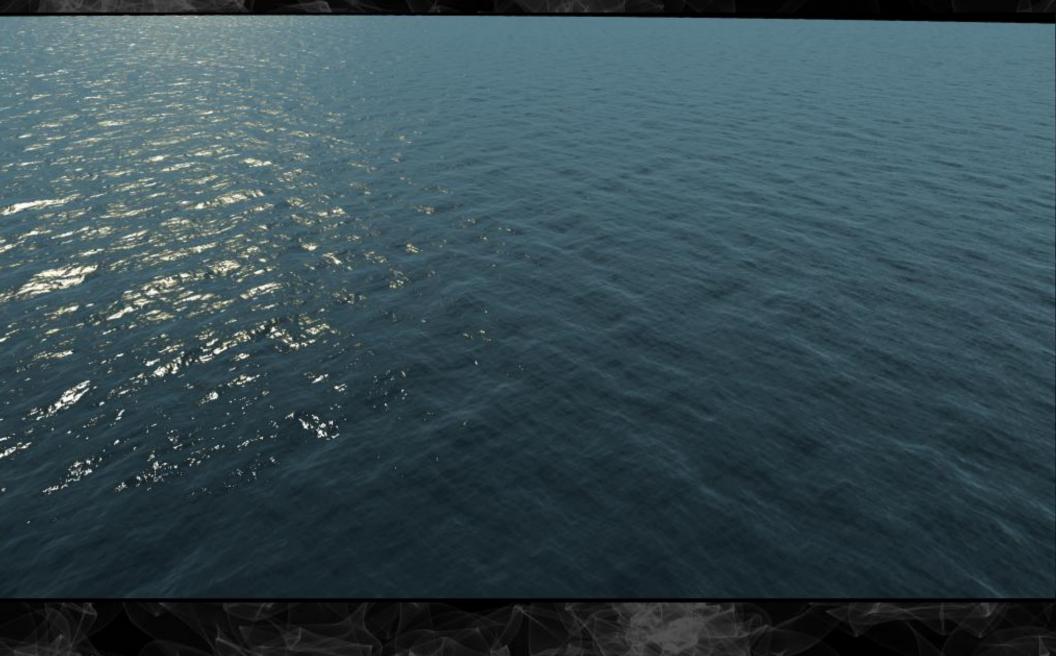
Wave height realization exists on a regular, periodic grid of points.

 $x = n\Delta x \quad (n = -N/2, \dots, (N-1)/2)$ $z = m\Delta z \quad (m = -M/2, \dots, (M-1)/2)$

The realization tiles seamlessly. This can sometimes show up as repetitive waves in a render.



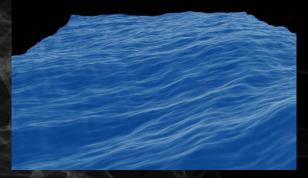
High Resolution Rendering Sky reflection, upwelling light, sun glitter 1 inch facets, 1 kilometer range



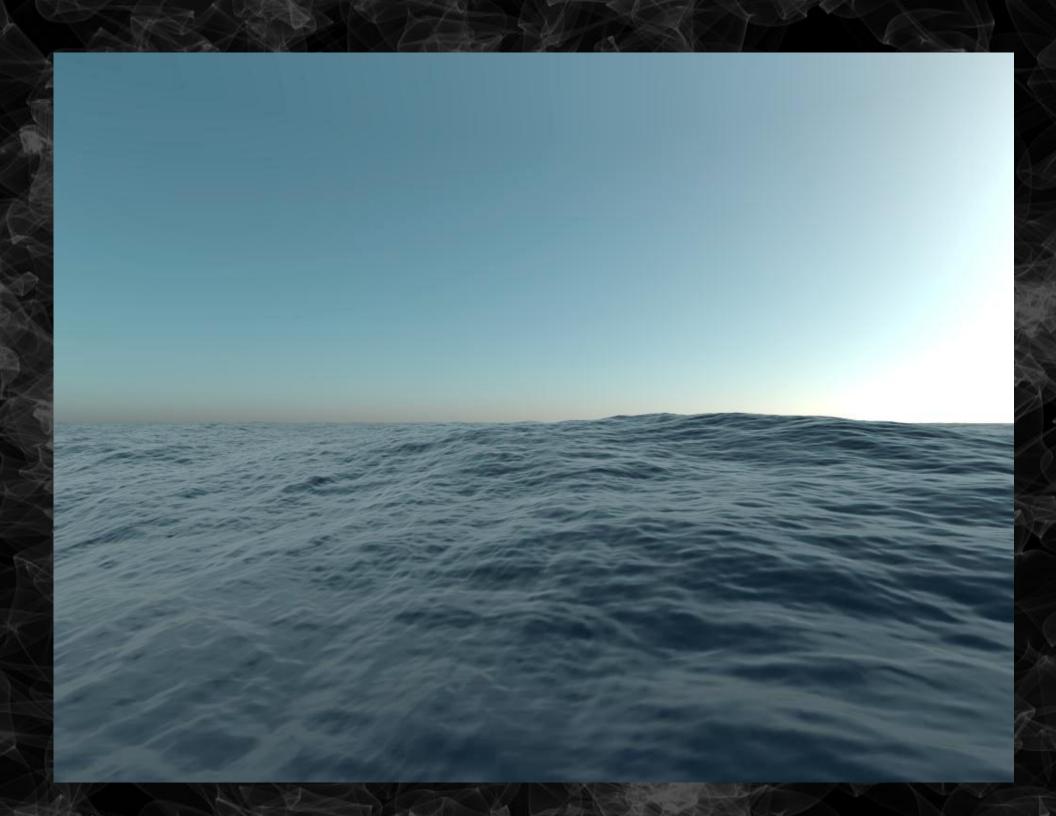
Effect of Resolution

Low : 100 cm facets

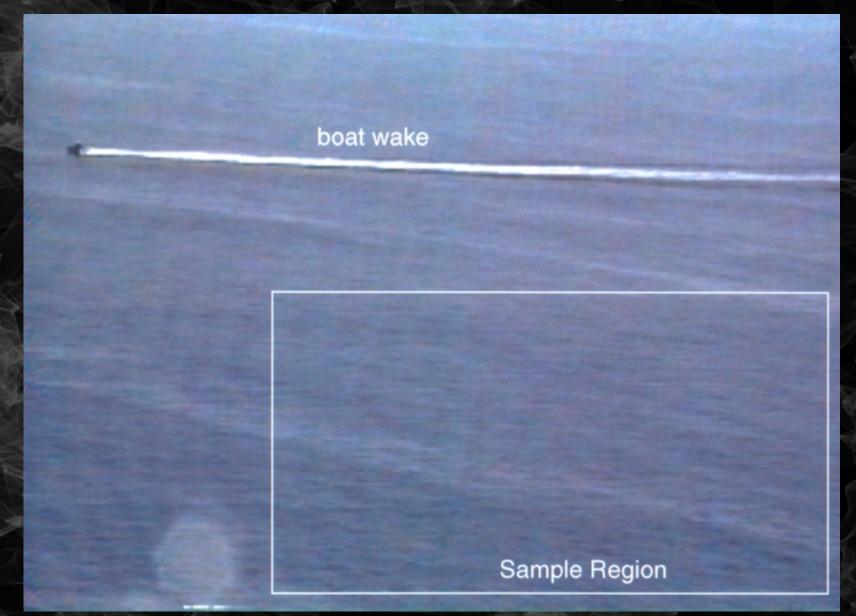
Medium : 10 cm facets



High : 1 cm facets



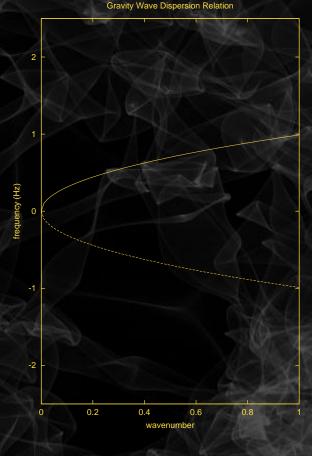
Simple Demonstration of Dispersion



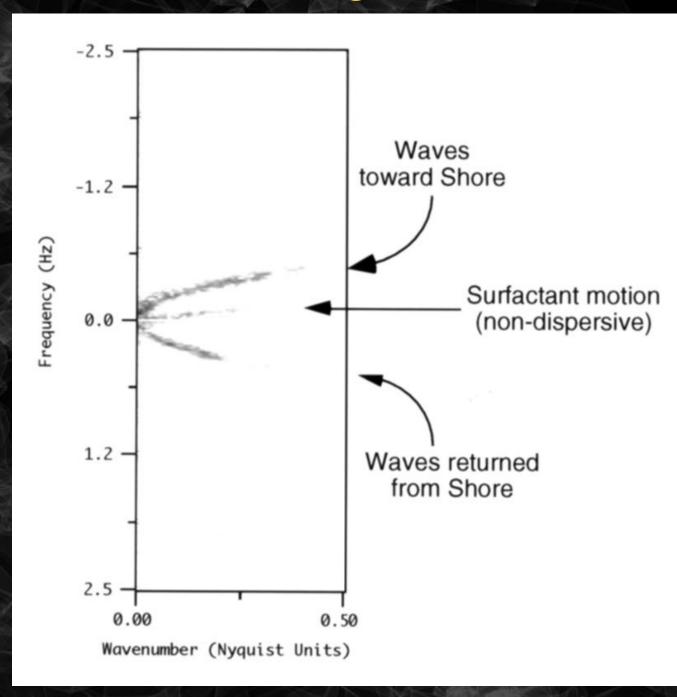
256 frames, 256×128 region

Data Processing

- Fourier transform in both time and space: $\tilde{h}(\mathbf{k},\omega)$
- Form Power Spectral Density $P(\mathbf{k}, \omega) = \left\langle \left| \tilde{h}(\mathbf{k}, \omega) \right|^2 \right\rangle$
- If the waves follow dispersion relationship, then P is strongest at frequencies $\omega = \omega(k)$.



Processing Results



Looping in Time – Continuous Loops

• Continuous loops can't be made because dispersion doesn't have a fundamental frequency.

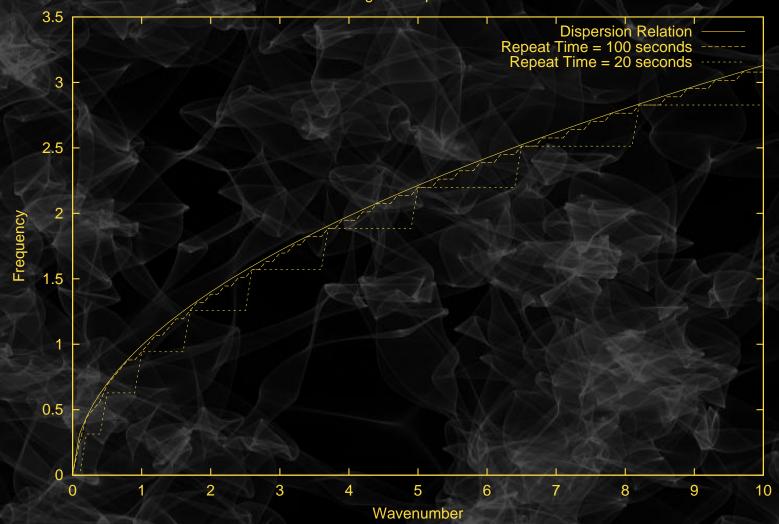
• Loops can be made by modifying the dispersion relationship.

Repeat time

Fundamental Frequency $\omega_0 = \frac{2\pi}{T}$

New dispersion relation $\tilde{\omega} = \text{integer}\left(\frac{\omega(k)}{\omega_0}\right) \omega_0$

Quantized Dispersion Relation



Quantizing the Dispersion Relation

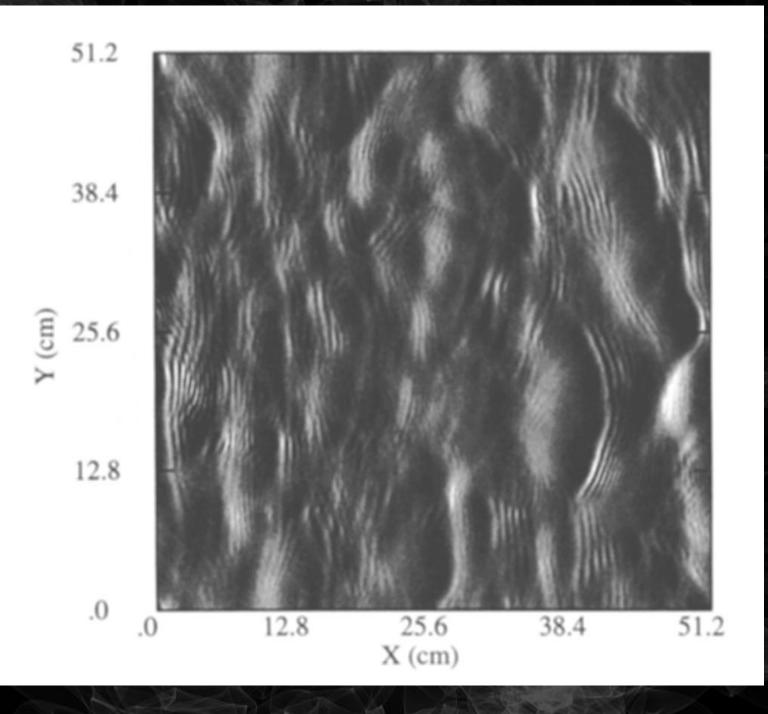
Hamiltonian Approach for Surface Waves Miles, Milder, Henyey, ...

• If a crazy-looking surface operator like $\sqrt{-\nabla_H^2}$ is ok, the exact problem can be recast as a *canonical problem* with momentum ϕ and coordinate h in 2D.

Milder has demonstrated numerically:
 The onset of wave breaking
 Accurate capillary wave interaction

Henyey *et al.* introduced *Canonical Lie Transformations*:
Start with the solution of the linearized problem - (φ₀, h₀)
Introduce a continuous set of transformed fields - (φ_q, h_q)
The exact solution for surface waves is for q = 1.

Surface Wave Simulation (Milder, 1990)



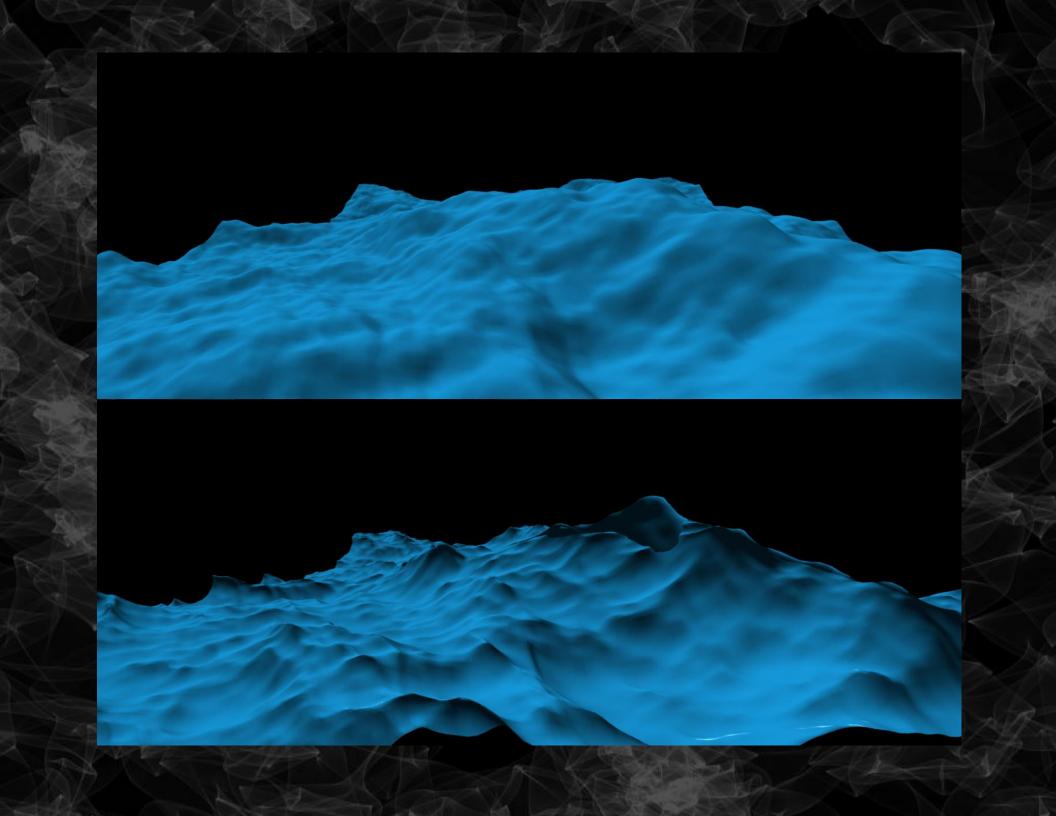
Choppy, Near-Breaking Waves

Horizontal velocity becomes important for distorting wave.

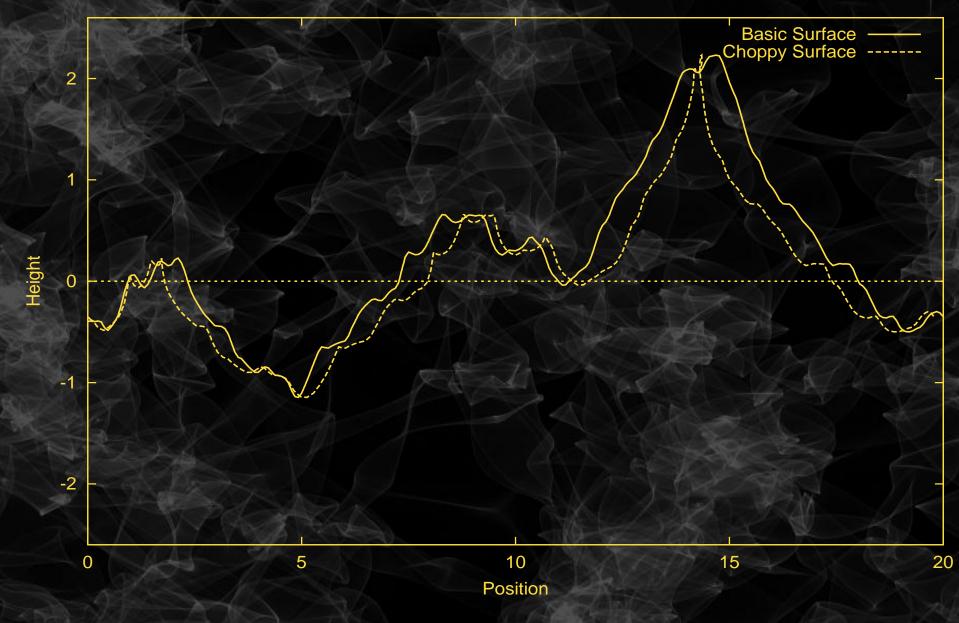
Wave at x morphs horizontally to the position x + D(x, t)

$$\mathbf{D}(\mathbf{x},t) = -\lambda \int d^2k \; \frac{i\mathbf{k}}{|\mathbf{k}|} \tilde{h}(\mathbf{k},t) \; \exp\left\{i(k_x x + k_z z)\right\}$$

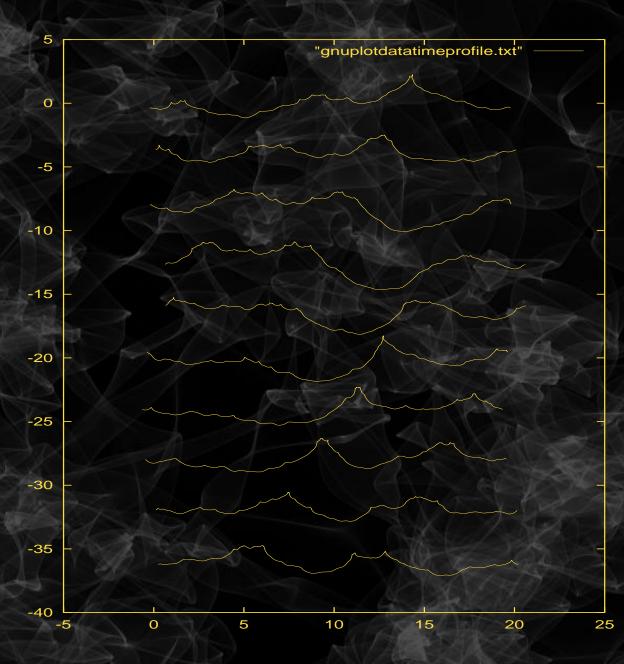
The factor λ allows artistic control over the magnitude of the morph.



Water Surface Profiles



Time Sequence of Choppy Waves



Choppy Waves: Detecting Overlap

 $\mathbf{x} \to \mathbf{X}(\mathbf{x}, t) = \mathbf{x} + \mathbf{D}(\mathbf{x}, t)$

is unique and invertible as long as the surface does not intersect itself.

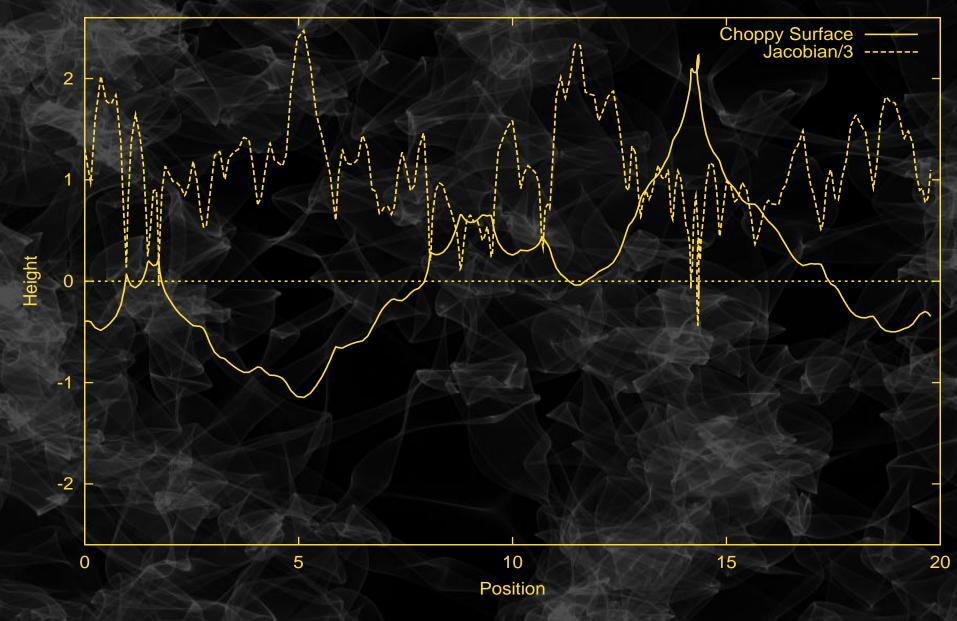
When the mapping intersects itself, it is not unique. The quantitative measure of this is the *Jacobian* matrix

 $J(\mathbf{x}, t) = \begin{bmatrix} \frac{\partial \mathbf{X}_x}{\partial x} & \frac{\partial \mathbf{X}_x}{\partial z} \\ \frac{\partial \mathbf{X}_z}{\partial x} & \frac{\partial \mathbf{X}_z}{\partial z} \end{bmatrix}$

The signal that the surface intersects itself is

 $\det(J) \le 0$

Water Surface Profiles



Learning More About Overlap

Two eigenvalues, $J_{-} \leq J_{+}$, and eigenvectors $\hat{\mathbf{e}}_{-}$, $\hat{\mathbf{e}}_{+}$

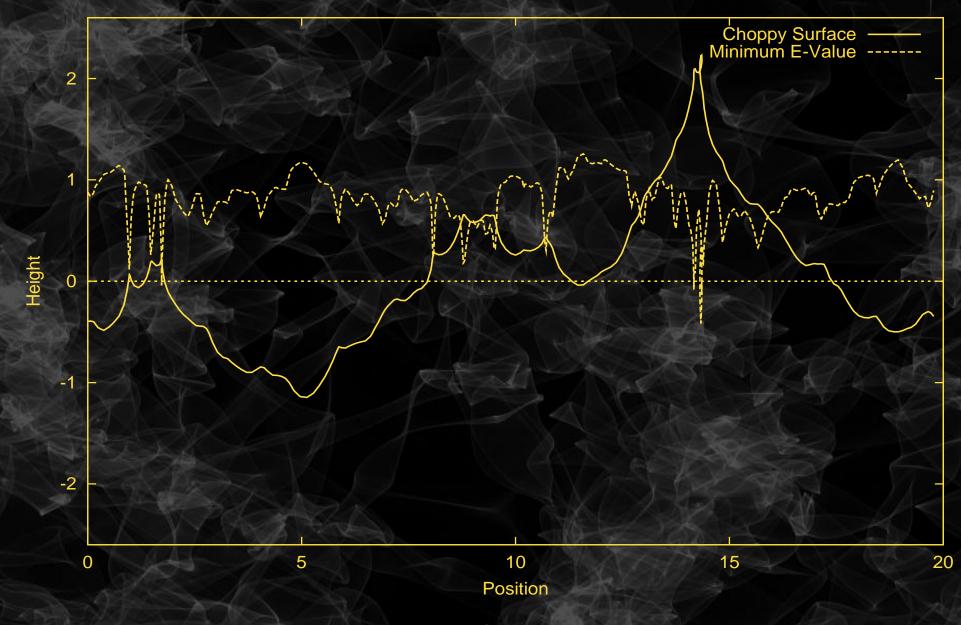
 $J = J_{-}\hat{\mathbf{e}}_{-}\hat{\mathbf{e}}_{-} + J_{+}\hat{\mathbf{e}}_{+}\hat{\mathbf{e}}_{+}$

 $\det(J) = J_- J_+$

For no chop, $J_{-} = J_{+} = 1$. As the displacement magnitude increases, J_{+} stays positive while J_{-} becomes negative at the location of overlap.

At overlap, $J_{-} < 0$, the alignment of the overlap is parallel to the eigenvalue $\hat{\mathbf{e}}_{-}$.

Water Surface Profiles



Simple Spray Algorithm

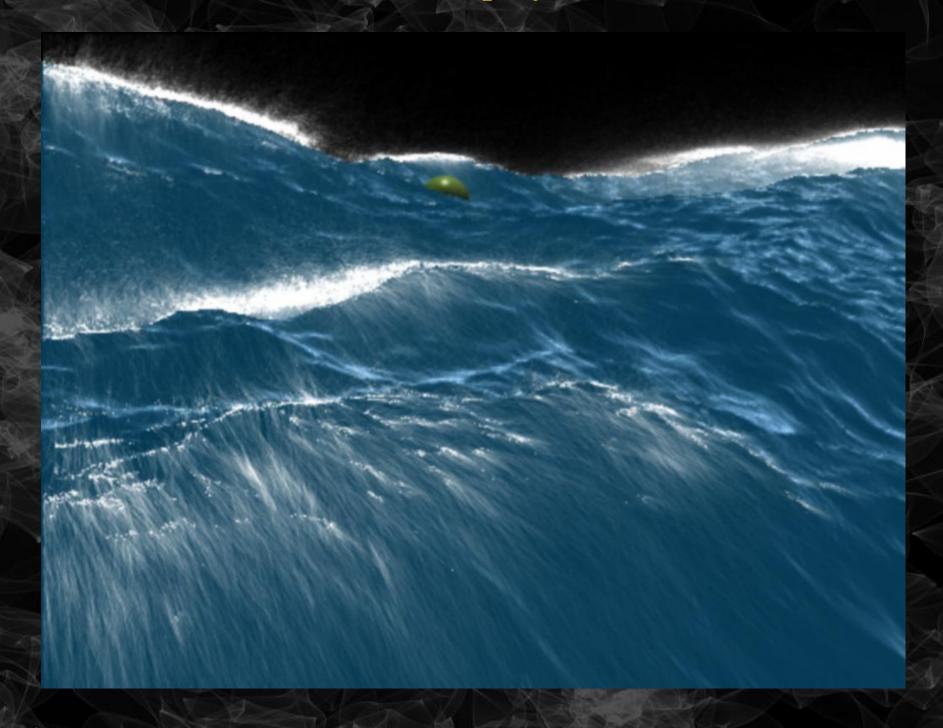
- Pick a point on the surface at random
- Emit a spray particle if $J_{-} < J_{T}$ threshold
- Particle initial direction (\hat{n} = surface normal)

• Particle initial speed from a half-gaussian distribution with mean proportional to $J_T - J_-$.

 $\hat{\mathbf{v}} = \frac{(J_T - J_-)\hat{\mathbf{e}}_- + \hat{\mathbf{n}}}{\sqrt{1 + (J_T - J_-)^2}}$

Simple particle dynamics: gravity and wind drag

Surface and Spray Render



Summary

- FFT-based random ocean surfaces are fast to build, realistic, and flexible.
- Based on a mixture of theory and experimental phenomenology.
- Used alot in professional productions.
- Real-time capable for games
- Lots of room for more complex behaviors.

Latest version of course notes and slides:

http://home1.gte.net/tssndrf/index.html

References

- Ivan Aivazovsky Artist of the Ocean, by Nikolai Novouspensky, Parkstone/Aurora, Bournemouth, England, 1995.
- Jeff Odien, "On the Waterfront", Cinefex, No. 64, p 96, (1995)
- Ted Elrick, "Elemental Images", Cinefex, No. 70, p 114, (1997)
- Kevin H. Martin, "Close Contact", Cinefex, No. 71, p 114, (1997)
- Don Shay, "Ship of Dreams", Cinefex, No. 72, p 82, (1997)
- Kevin H. Martin, "Virus: Building a Better Borg", Cinefex, No. 76, p 55, (1999)
- Grilli, S.T., Guyenne, P., Dias, F., "Modeling of Overturning Waves Over Arbitrary Bottom in a 3D Numerical Wave Tank," *Proceedings 10th Offshore and Polar Enging. Conf.* (ISOPE00, Seattle, USA, May 2000), Vol. **III**, 221-228.
- Marshall Tulin, "Breaking Waves in the Ocean," *Program on Physics of Hydrodynamic Turbulence*, (Institute for Theoretical Phyics, Feb 7, 2000), http://online.itp.ucsb.edu/online/hydrot00/si-index.html
- Dennis B. Creamer, Frank Henyey, Roy Schult, and Jon Wright, "Improved Linear Representation of Ocean Surface Waves." J. Fluid Mech, **205**, pp. 135-161, (1989).
- Milder, D.M., "The Effects of Truncation on Surface Wave Hamiltonians," J. Fluid Mech., 217, 249-262, 1990.