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Objectives

• Oceanography concepts

• Random wave math

• Hints for realistic look

• Advanced things

h(x, z, t) =

∫ ∞
−∞

dkx dkz h̃(k, t) exp {i(kxx + kzz)}

h̃(k, t) = h̃0(k) exp {−iω0(k)t}+h̃∗0(−k) exp {iω0(k)t}
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Waterworld 13th Warrior Fifth Element
Truman Show Titanic Double Jeopardy
Hard Rain Deep Blue Sea Devil’s Advocate
Contact Virus 20k Leagues Under the Sea
Cast Away World Is Not Enough 13 Days
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Navier-Stokes Fluid Dynamics

Force Equation

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) +∇p(x, t)/ρ = −gŷ + F

Mass Conservation

∇ · u(x, t) = 0

Solve for functions of space and time:


• 3 velocity components

• pressurep

• densityρ distribution


Boundary conditions are important constraints

Very hard - Many scientitic careers built on this
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Potential Flow

Special Substitution u = ∇φ(x, t)

Transforms the equations into

∂φ(x, t)

∂t
+

1

2
|∇φ(x, t)|2 +

p(x, t)

ρ
+ gx · ŷ = 0

∇2φ(x, t) = 0

This problem is MUCH simpler computationally and mathematically.
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Free Surface Potential Flow

In the water volume, mass conservation is enforced via

φ(x) =

∫
∂V

dA′
{
∂φ(x′)

∂n′
G(x,x′)− φ(x′)

∂G(x,x′)

∂n′

}

At points r on the surface

∂φ(r, t)

∂t
+

1

2
|∇φ(r, t)|2 +

p(r, t)

ρ
+ gr · ŷ = 0

Dynamics of surface points:

dr(t)

dt
= ∇φ(r, t)
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Numerical Wave Tank Simulation

Grilli, Guyenne, Dias (2000)
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Plunging Break and Splash Simulation

Tulin (1999)
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Simplifying the Problem

Road to practicality - ocean surface:

• Simplify equations for relatively mild conditions

• Fill in gaps with oceanography.

Original dynamical equation at 3D points in volume

∂φ(r, t)

∂t
+

1

2
|∇φ(r, t)|2 +

p(r, t)

ρ
+ gr · ŷ = 0

Equation at 2D points (x, z) on surface with height h

∂φ(x, z, t)

∂t
= −gh(x, z, t)
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Simplifying the Problem: Mass Conservation

Vertical component of velocity

∂h(x, z, t)

∂t
= ŷ · ∇φ(x, z, t)

Use mass conservation condition

ŷ · ∇φ(x, z, t) ∼
(√
−∇2

H

)
φ =

(√
− ∂2

∂x2
− ∂2

∂z2

)
φ
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Linearized Surface Waves

∂h(x, z, t)

∂t
=

(√
−∇2

H

)
φ(x, z, t)

∂φ(x, z, t)

∂t
= −gh(x, z, t)

General solution easily computed in
terms of Fourier Transforms
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Solution for Linearized Surface Waves

General solution in terms of Fourier Transform

h(x, z, t) =

∫ ∞
−∞

dkx dkz h̃(k, t) exp {i(kxx + kzz)}

with the amplitude depending on the dispersion relationship

ω0(k) =
√
g |k|

h̃(k, t) = h̃0(k) exp {−iω0(k)t} + h̃∗0(−k) exp {iω0(k)t}

The complex amplitude h̃0(k) is arbitrary.
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Oceanography

• Think of the heights of the waves as a kind of random
process

• Decades of detailed measurements support a statistical
description of ocean waves.

• The wave height has a spectrum〈∣∣∣h̃0(k)
∣∣∣2〉 = P0(k)

• Oceanographic models tie P0 to environmental parame-
ters like wind velocity, temperature, salinity, etc.
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Models of Spectrum

•Wind speed V

•Wind direction vector V̂ (horizontal only)

• Length scale of biggest waves L = V 2/g
(g=gravitational constant)

Phillips Spectrum

P0(k) =
∣∣∣k̂ · V̂∣∣∣2 exp(−1/k2L2)

k4

JONSWAP Frequency Spectrum

P0(ω) =
exp
{
−5

4

(
ω
Ω

)−4
+ e−(ω−Ω)2/2(σΩ)2

ln γ
}

ω5
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Variation in Wave Height Field

Pure Phillips Spectrum Modified Phillips Spectrum
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Simulation of a Random Surface

Generate a set of “random” amplitudes on a grid

h̃0(k) = ξeiθ
√
P0(k)

ξ = Gaussian random number, mean 0 & std dev 1

θ = Uniform random number [0,2π].

kx =
2π

∆x

n

N
(n = −N/2, . . . , (N − 1)/2)

kz =
2π

∆z

m

M
(m = −M/2, . . . , (M − 1)/2)
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FFT of Random Amplitudes

Use the Fast Fourier Transform (FFT) on the amplitudes to
obtain the wave height realization h(x, z, t)

Wave height realization exists on a regular, periodic grid of
points.

x = n∆x (n = −N/2, . . . , (N − 1)/2)

z = m∆z (m = −M/2, . . . , (M − 1)/2)

The realization tiles seamlessly. This can sometimes show
up as repetitive waves in a render.
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High Resolution Rendering
Sky reflection, upwelling light, sun glitter

1 inch facets, 1 kilometer range
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Effect of Resolution

Low : 100 cm facets

Medium : 10 cm facets

High : 1 cm facets
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Simple Demonstration of Dispersion

256 frames, 256×128 region
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Data Processing

• Fourier transform in both time and space:h̃(k, ω)

• Form Power Spectral DensityP (k, ω) =

〈∣∣∣h̃(k, ω)
∣∣∣2〉

• If the waves follow dispersion relationship, thenP is strongest
at frequenciesω = ω(k).
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Processing Results
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Looping in Time – Continuous Loops

• Continuous loops can’t be made because dispersion doesn’t
have a fundamental frequency.

• Loops can be made by modifying the dispersion relationship.

Repeat time T

Fundamental Frequencyω0 = 2π
T

New dispersion relationω̃ = integer
(
ω(k)
ω0

)
ω0
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Quantized Dispersion Relation
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Hamiltonian Approach for Surface Waves
Miles, Milder, Henyey, . . .

• If a crazy-looking surface operator like
√
−∇2

H is ok, the
exact problem can be recast as a canonical problem with
momentum φ and coordinate h in 2D.

•Milder has demonstrated numerically:

– The onset of wave breaking
– Accurate capillary wave interaction

• Henyey et al. introduced Canonical Lie Transformations:

– Start with the solution of the linearized problem - (φ0, h0)

– Introduce a continuous set of transformed fields - (φq, hq)

– The exact solution for surface waves is for q = 1.
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Surface Wave Simulation (Milder, 1990)
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Choppy, Near-Breaking Waves

Horizontal velocity becomes important for distorting wave.

Wave at x morphs horizontally to the position x + D(x, t)

D(x, t) = −λ
∫
d2k

ik

|k|
h̃(k, t) exp {i(kxx + kzz)}

The factor λ allows artistic control over the magnitude of the
morph.
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Time Sequence of Choppy Waves
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Choppy Waves: Detecting Overlap

x→ X(x, t) = x + D(x, t)

is unique and invertible as long as the surface does not
intersect itself.

When the mapping intersects itself, it is not unique. The
quantitative measure of this is the Jacobian matrix

J(x, t) =

[
∂Xx/∂x ∂Xx/∂z
∂Xz/∂x ∂Xz/∂z

]

The signal that the surface intersects itself is

det(J) ≤ 0
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Learning More About Overlap

Two eigenvalues, J− ≤ J+, and eigenvectors ê−, ê+

J = J−ê−ê− + J+ê+ê+

det(J) = J−J+

For no chop, J− = J+ = 1. As the displacement magnitude
increases, J+ stays positive while J− becomes negative at
the location of overlap.

At overlap, J− < 0, the alignment of the overlap is parallel
to the eigenvalue ê−.
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Simple Spray Algorithm

• Pick a point on the surface at random

• Emit a spray particle if J− < JT threshold

• Particle initial direction (n̂ = surface normal)

v̂ =
(JT − J−)ê− + n̂√

1 + (JT − J−)2
(1)

• Particle initial speed from a half-gaussian distribution with
mean proportional to JT − J−.

• Simple particle dynamics: gravity and wind drag
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Surface and Spray Render
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Summary

• FFT-based random ocean surfaces are fast to build, realistic,
and flexible.

• Based on a mixture of theory and experimental
phenomenology.

• Used alot in professional productions.

• Real-time capable for games

• Lots of room for more complex behaviors.

Latest version of course notes and slides:

http://home1.gte.net/tssndrf/index.html
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