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ABSTRACT: A discussion of chemical modeling approaches is presented with emphasis
on modeling chemicals in estuaries. An application of modeling di-n-octyl phthalate in a
subestuary of Chesapeake Bay indicates that the most sensitive processes for an analyst to
' consider in estuary chemical modeling are dispersive transport, biological partitioning,
boundary exchange, and sediment partitioning. Additional research is needed to evaluate
the role of coagulation and sedimentation in such efforts. A framework for consideration
; "‘" ; ; ; of effects modeling is presented briefly.
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Estuaries can be the final depository for point and diffuse sources of poten-
_ | | _ tially toxic chemicals released into upland waters. For this reason, estuarine
125 2500 375 5000 625 750 chemical fate modeling—in sl_:uit!: of the lack of data, the mathematica! com-
plexity, and the high costs—is important and should be emphasized in any
Land surface thermal inertia (T1U) comprehensive chemical fate analysis. To date, most chemical fate models
have been limited to predicting concentrations in various environmental
Flow Chart of the Thermal Model Part lll P &

compartments, such as water, sediment, and biota. Few applied studies have

attempted to link ecosystem or population effects models with a fate model.
Temperature Time Dependant Model We have coupled physical transport processes and terms with a gross
Thermal-Model Flow Chart (Part Ill) biological compartment to illustrate a more meaningful fate modeling ap-
proach that describes the distribution of a potential toxic substance in an
estuary.

ASTM Peer Review Research Paper

Net Heat Budget at the

Surface Thermal Inertia

Dr. Bostater, bostater@fit.edu www.bostater.info 321-258-9134
Marine & Environmental Optics Lab & Remote Sensing Center

7= +-“2‘Qli QJIQ
P\ r


mailto:bostater@fit.edu
http://www.bostater.info/

;;;;;

™ R

Atmospheric Boundary
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MPI Parallelization Method for the UTC-M model
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A 3-dimensional
matrix is divided
into 4 equal 3-
dimensional
matrices. Each
processor works
simultaneously on
each of the 4 new
matrices.
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Parallelization & Testing of a Monte Carlo Reflectance Model
for Generating Synthetic Hyperspectral Images of Shallow
Marine Waters & Water Quality (10,000 photons per voer of

Sebastian Inlet, Florida
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Comparison between an analytical and
Monte Carlo hyperspectral reflectance
model for water & coastal remote sensing
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Simulated Subsurface Irradiance Reflectance just
below the air/water interface for optically deep
water. Monte Carlo (MC) versus 2 Flow
Analytical Model. Pure water Backscatter &

absorption coefficients.

ater Surface Height for various water
wave spectrum models

Water surface waves influence water surface reflectance and in turn the
detection of substances in water and the ability to sensors to detect

subsurface targets. @
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Model Code of the water —
surface and the water
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simulate the photon Blow up
interaction between the air, Volume pixel
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Sensor biases error estimates Data Fusion: Spectral-Spatial sharpening
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Kalman Filtering & Airborne Hyperspectral Water
Surface Imagery & Radiative Transfer Modeling

Image Fusion of Hyperspectral & Multispectral Imagery

Spectral-Spatial sharpening

Along-track direction

Cross-track direction

Resulting sharpened image

MS image (co-registered)

Shallow Water Airborne Hyperspectral Image
showing retrieved geophysical bottom features
& weathered oil after Deepwater Horizon.

Image Data Fusion of Hyperspectral & Multispectral Imagery
For Target Detection Modeling on Shorelines
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