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ABSTRACT 
 
Biogeographical analyses provide insights on how the Deepwater Horizon oil spill impacted large pelagic fishes. We 
georeferenced historical ichthyoplankton surveys and published literature to map the spawning and larval areas of 
bluefin tuna, swordfish, blue marlin and whale shark sightings in the Gulf of Mexico with daily satellite-derived images 
detecting surface oil. The oil spill covered critical areas used by large pelagic fishes. Surface oil was detected in 100% of 
the northernmost whale shark sightings, in 32.8 % of the bluefin tuna spawning area and 38 % of the blue marlin larval 
area. No surface oil was detected in the swordfish spawning and larval area. Our study likely underestimates the extend 
of the oil spill due to satellite sensors detecting only the upper euphotic zone and the use of dispersants altering crude oil 
density, but provides a previously unknown spatio-temporal analysis.  
 
Keywords: Deepwater Horizon, oil spill, image analysis, satellite remote sensing, spawning, nekton, endangered 
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1. INTRODUCTION 
 
Oil spill detection by satellite remote sensing is a reliable survey method when different sensors and satellites are 
combined 1 . Earlier use of satellite sensors for oil spill detection, including the 1979 Ixtoc I in Mexico 2, the 1989 Exxon 
Valdez in Alaska 3 and the 1991 Arabian Gulf War spill 4 , required extensive user input during image processing to 
make the oil spill visible 2 . Advances in the frequency of satellite passes, sensors, and dedicated software, have greatly 
improved oil spill detection using satellite remote sensing (2002 Prestige in Spain 5 ).  
 
The Deepwater Horizon (DWH) oil spill released crude oil from a depth of ~1500 m at an estimated rate of 68,000 
barrels per day into the Gulf of Mexico during 87 days, from 20 April to 15 July 2010 6 . Satellite images have been used 
for tracking and modeling the advance of the oil spill 7, 8 and  changes in ocean surface productivity 9 . The aim of this 
study was to determine if satellite imagery, coupled with biological data, could detect surface oil spill presence in critical 
breeding and feeding areas of the Gulf’s pelagic ecosystem.  
 
Here we report that the spawning areas of giant predatory nekton (bluefin tuna and blue marlin) and feeding areas of 
giant plankton-feeding nekton (whale sharks) were covered with oil for a significant amount of time. These giant nekton 
species are either overfished, vulnerable or critically endangered (Table 1). Possible consequences in the pelagic 
ecosystems of the Gulf of Mexico  may be profound ranging from impacts on endangered species recovery to fish stock 
management. 
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Table 1. Basic life history parameters and population status for the giant nekton species shown in this study. 

 

Species Maximum 
Length (m) 

Maximum Weight 
(Kg) 

Spawning Season IUCN Red List 
Status 10 

Whale Shark 
Rhincodon typus 

12 - 20 11 12,000 12 Unknown 13 
(Ovoviviparous) 

Vulnerable 

Bluefin Tuna 
Thunnus Thynnus 

> 3 14 560 14 June to August 15 Data deficient 
Critically 
endangered 16 

Swordfish  
Xiphias gladius  

4.5 17 650 17 December to June 18 Data deficient 
(needs updating) 

Blue Marlin 
Makaira nigricans 

5 19 636 19 May to September 19 Unlisted 

 
 

2. METHODS 
 
2.1 NOAA-NESDIS Satellite-derived surface oil analysis products 
 
Satellite derived oil analyses were produced as an experimental product of the NOAA Satellite Analysis Branch. The 
experimental imagery analysis provided, combined images from he following satellites: RADARSAT-1 (Canadian 
Space Agency), RADARSAT-2 (Canadian Space Agency & MacDonald Dettwiler and Associates Ltd), COSMO-
SkyMed (Italian Space Agency), TerraSAR-X (German Aerospace Centre), ALOS (Japan Aerospace Exploration 
Agency & Japan Resources Observation System Organization), ENVISAT (European Space Agency), MODIS (NASA), 
AVHRR on NOAA-15,-17,-19 satellites (NOAA), Multispectral Imagery (The Disaster Monitoring Constellation), 
SPOT (SPOT Image & French Government Space Agency - CNES). Full geographical extend of the oil might not be 
detected if the oil sheen is too thin. Subsurface oil is generally not detected with the method. The experimental product 
was downloaded as layers to create a Geographic information System (GIS) database from the NOAA-NESDIS web site 
(http://www.ssd.noaa.gov/PS/MPS/deepwater.html). Daily satellite composites were not available or were corrupted for 
the 24 April to 25 August 2010 survey period. Specifically April 27, May 6-7, 9, 11-26, June 14, July 22, August 3-4, 9, 
11-14, 16-17, 19-20 and 22-24 are missing in this analysis. Therefore, the total number of daily satellite composite 
samples is 87. 
 
2.2 Percent occurrence of surface oil and spatial statistical analysis 
 
Based on the maximum oil surface coverage shown in the daily composite satellite-derived surface oil analysis, the area 
23° N to 30.5° N latitude and 82° W to 94.5° W longitude was divided into a 0.5º x 0.5º grid, and the presence or 
absence of surface oil was recorded to calculate the percent of time each grid square had surface oil detection.  We used 
the non-parametric Cochran’s Q test in lieu of a parametric repeated measurements ANOVA, because we used a binary 
variable 20 . Here the “individuals” were each of the 349 squares in the 0.5° x 0.5° grid and the randomized blocks 
treatment were the days surveyed. Presence of surface oil was classified as a bad condition (assigned value “0”), absence 
of surface oil was classified as a good condition (assigned value “1”). We tested the null hypothesis (alpha = 0.01) that 
the proportion of 0.5° x 0.5° squares in good condition (free of surface oil) remained the same as the season progressed.  
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2.3 Mapping spawning and larval areas, and whale shark sightings 
 
Spawning area mapping included ichthyoplankton surveys conducted by NOAA within the SEAMAP program, a 
fishery-independent gulfwide survey, including the entire northern Gulf of Mexico within the U.S. Exclusive Economic 
Zone, EEZ, since 1982. We used ichtyoplankton maps compiled from the 1982 through 1985 SEAMAP surveys 21,22,23,24  
and data summaries 25,26 . We also used information on female ripeness and reproductive condition in blue fin tuna 15 and 
non-government surveys of swordfish 18 and blue marlin 19 . We mapped whale shark sightings from data in the 
published literature 27,28,29,30,31 . 
 
 

3. RESULTS  
 

The spawning and larval areas for bluefin tuna (Tunnus thynnus), swordfish (Xiphias gladius) and blue marlin (Makaira 
nigricans) were mapped based on approximately 5,000 historical ichthyoplankton samples collected over a 5 year period 
and published reports of female reproductive condition. Whale shark (Rhyncodon typus) sightings were mapped from 
reports dating back to 1957 (Fig.1).  The extent and presence of the oil spill on the sea surface was mapped from NOAA-
NESDIS daily satellite-derived surface oil analysis images from 24 April to 25 August 2010 (Fig 2A). Surface oil 
presence increased from the start of the sampling period (Cochran’s Q test, a= 87, b = 349, d.f. = 86, χ2 = 119.41, P < 
0.01) and decreased after the well was capped on 15 July 2010 (Cochran’s Q test, a= 27, b = 349, d.f. = 26, χ2 = 45.6, P 
< 0.01). Analysis of the surface oil percent occurrence (Fig 2B) showed that 50-100 % of the days surveyed, the oil was 
present within latitude 28° N to 30° N and longitude 87.5° W to 90° W. Lower percent occurrences radiated from the 
epicenter reaching as far south as 23° N. Surface oil was detected in 100 % of the northernmost whale shark sigthtings, 
in 32.8 % (52,594.7 km2) of the bluefin tuna spawning area and 38 % (53,348.51 km2) of the blue marlin spawning and 
larval area (Fig 3). No surface oil was detected in the swordfish spawning and larval areas using the satellite derived 
data.  
 
 
 

 
Figure 1. Map showing the location of whale shark sightings and spawning/larval areas of bluefin tuna, swordfish and blue marlin in 
the Gulf of Mexico. The black square indicates the area presented in Figure 2. 

Proc. of SPIE Vol. 8175  81750F-3

Downloaded from SPIE Digital Library on 21 Oct 2011 to 163.118.1.166. Terms of Use:  http://spiedl.org/terms



 

 

Figure 2. The extent of the Deepwater Horizon oil spill. (A) Daily multi-sensor satellite detected surface oil (August is not shown). 
(B) Percent time oil was present within a 0.5º x 0.5º geographical grid. 
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Figure 3. Percent time of oil presence and total surface covered in spawning areas of bluefin tuna and blue marlin 
 
 

4. DISCUSSION 
 
Oil presence on the sea surface and the timing of its occurrence likely impacted the developing eggs and larvae of 
bluefin tuna and blue marlin. Pelagic eggs and larvae concentrate at the sea surface microlayer, SML (upper 0-1 mm), 
the boundary between the atmosphere and the ocean 32 . The SML also concentrates petroleum, petroleum-derived 
hydrocarbons, tar, pesticides, polychlorinated biphenyls (PCBs), heavy metals and plastics 33 .Exposure to oil and oil 
dispersants causes acute toxicity, narcosis and eventual death in marine fish larvae 34 .  
 
Sea surface oil might have affected whale sharks in a different way. Whale sharks do not have a plankton phase 
homologue to that of giant predatory nekton. The species is ovoviviparous, with females giving birth to live pups 13 . 
Pupping areas are unknown. Whale sharks have dense filtering screens in their modified gill rakers for feeding on dense 
aggregations of plankton and small nekton 11 . The oil spill and oil-dispersant complex could clog the filtering system of 
whale sharks, resulting in chronic starvation or even asphyxia. 
 
Our satellite derived biogeographical analysis likely underestimates the extend of the oil spill and its ecological impacts 
on large pelagic fish. First, some satellite sensors only detect the ocean microlayer, the first millimeters of the sea 
surface, without detecting subsurface oil. Other sensors only detect the relatively thin well mixed euphotic zone near the 
water surface. Second, the use of dispersants on the sea surface may have disrupted the integrity of the oil sheen 
microlayer that is detected by satellite sensors. Third, although it has been suggested that most of the oil spill 
accumulated on the sea surface 35  based on the low density of Louisiana crude oil, the injection of dispersants directly at 
the submerged well head might have altered the density of the crude oil to a yet unknown amount, reducing its tendency 
to accumulate at the sea surface and thus remaining submerged in small oil-dispersant droplets. 
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